\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 4TE02emt2
Course Name: B.Tech
Semester:II

Subject Name: Engineering Mathematics-II
Date: 18/5/2015
Marks:70
Time:02:30 TO 05:30

Instructions:

1) Attempt all Questions in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

Q-1 Answer the following. (2 marks each)
(i) Evaluate: $\int_{0}^{\frac{\pi}{4}} \tan ^{4} x d x$
(ii) Find the order and degree of differential equation $\left\{\frac{d^{2} y}{d x^{2}}+1\right\}^{1 / 2}=\left(\frac{d y}{d x}\right)^{3}$
(iii) Find the oblique asymptote of the curve $y^{3}-x^{2}(6-x)=0$
(iv) The series Σu_{n} of positive terms is either \qquad or \qquad but cannot be
(iv) \qquad .
(v) Prove that error function is an odd function.
(vi) Evaluate : $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} \mathrm{x}^{2} \mathrm{yz}$ dzdydx.
(vii) Prove that $n B(m+1, n)=m B(m, n+1)$.

Attempt any four (from Q-2 to Q-8)

Q-2 (A) Evaluate $\int_{0}^{1} \frac{d x}{\sqrt{4 x-x^{2}} \sqrt{4-\mathrm{x}^{2}}}$ in a terms of elliptic integral.
(B) Derive Reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x \quad n \geq 2$.
(C) Evaluate $\int_{0}^{1} \frac{x^{2}}{\left(1-x^{4}\right)^{\frac{1}{2}}} d x \cdot \int_{0}^{1} \frac{1}{\left(1-x^{4}\right)^{\frac{1}{2}}} d x$

Q-3 (A) Evaluate $\iint_{\mathrm{R}} \mathrm{x} d \mathrm{x}$ dy over the region R bounded by $\mathrm{y}=\mathrm{x}^{2}$ and $\mathrm{y}=\mathrm{x}+6$

(B) Trace the curve $r^{2}=a^{2} \cos 2 \theta$.
(C) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d y d x$ by changing the order of integration.

Q-4 (A) Find whole length of the Lemniscate of Bernoulli $r^{2}=a^{2} \cos 2 \theta$
(B) Trace the curve $y^{2}(2+x)=x^{2}(2-x)$
(C) Evaluate $\int_{0}^{\pi} x \sin ^{7} x \cos ^{4} x d x$

Q-5 (A) Find the area bounded by the curve $\mathrm{r}=(1-\cos \theta)$
(B) Solve $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$
(C) Find the orthogonal trajectories of $r^{n}=a^{n} \cos n \theta$

Q-6 (A) Solve $\frac{d y}{d x}=x^{3}-2 x y, \quad y(1)=2$
(B) Examine the convergence of the series $\frac{1}{1 \cdot 2 \cdot 3}+\frac{x}{4 \cdot 5 \cdot 6}+\frac{x^{2}}{7 \cdot 8 \cdot 9}+\cdots$
(C) Evaluate $\int_{3}^{7} \sqrt[4]{(x-3)(7-x)} d x$

Q-7 (A) Evaluate $\int_{0}^{2 a} \int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d x d y$ by changing into polar co - ordinates.
(B) Find radius of convergence and interval of convergence of the series
$\sum(-1)^{n} \frac{n(x+1)^{n}}{2}$
(C) Evaluate $\int_{0}^{1} x^{5} \sin ^{-1} x d x$

Q-8(A) When a resistance R ohms is connected in series with an inductance L henries, an e.m.f. $10 \sin w t$ volts, the current i amperes at time t and $i=0$ when $t=0$. Show that the current at any time t is $\frac{10}{\sqrt{R^{2}+L^{2}}}\left\{\sin (t-\phi)+e^{-\frac{R t}{L}} \sin \phi\right\}$, where $\phi=\tan ^{-1}\left(\frac{L}{R}\right)$
(B) Define Leibnitz' test on alternating series and using it examine the convergence of the series $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$
(C) Define error function and show that $\operatorname{erf}(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{x \sqrt{2}} e^{-\frac{u^{2}}{2}} d u$

